穿孔板聲屏障吸聲結構是一種板厚度和孔徑都小的穿孔板結構,其孔徑一般不大于3mm。微穿孔板吸聲結構同樣屬于共振吸聲結構,其吸聲機理與穿孔板結構也基本相同。與普通穿孔板吸聲結構相比,其特點是吸聲頻帶寬、吸聲系數高,缺點是加工困難、成本高。微穿孔板吸聲結構也可以組合成雙層或多層結構使用,以進一步提高其吸聲性能。
由穿孔板聲屏障構成的共振吸聲結構被稱做穿孔板共振吸聲結構,它也是工程中常用的共振吸聲結構。對于多孔共振吸聲結構,實際上可以看成單孔共振吸聲結構的并聯結構,因此多孔共振吸聲結構的吸聲性能要比單孔共振吸聲結構的吸聲效果好,通過孔參數的優化設計,可以有效改善穿孔板聲屏障吸聲頻帶等性能。采用交流阻抗譜測試方法,研究了羥乙基甲基纖維素對水泥水化進程的影響規律.研究表明,交流阻抗譜圖及其阻抗參數能在一定程度上反映摻羥乙基甲基纖維素水泥漿體的水化進程情況.羥乙基甲基纖維素能顯著延緩阻抑水泥水化進程,降低水泥水化程度和水化產物CSH凝膠的生成速率,且能增大水泥漿體的孔溶液黏度,降低孔溶液離子遷移速率,從而導致水泥漿體的電化學反應顯著滯后于其水化反應,還能使得水泥漿體孔結構更為簡單、均勻;摻量越大,羥乙基甲基纖維素對水泥水化進程的影響程度越大.
穿孔板聲屏障的共振頻率與穿孔板的穿孔率、空腔深度都有關系,與穿孔板孔的直徑和孔厚度也有關系。穿孔板的穿孔面積越大,吸聲頻率就越高;空腔或板的厚度越大,吸聲頻率就越低。為了改變穿孔板的吸聲特性,可以通過改變上述參數以滿足聲學設計上的需要。穿孔板主要用于吸收中、低頻率的噪聲,穿孔板的吸聲系數在0.6左右。多穿孔板的吸聲帶寬定義為,吸聲系數下降到共振時吸聲系數的一半的頻帶寬度為吸聲帶寬,穿孔板的吸聲帶寬較窄,只有幾十赫茲到幾百赫茲。
通過試驗研究了聚丙烯(PP)纖維和植物纖維素(UFPP)纖維對受荷混凝土滲透性能的影響.結果表明:在一定荷載范圍內,纖維混凝土的抗滲能力有所提高,當荷載超過混凝土破壞荷載30%左右時,其抗滲能力隨之下降.同時研究了纖維對各齡期混凝土抗氯離子滲透性能及抗凍融循環耐久性能的影響,并分析了其機理.
金屬吸聲尖劈隔音屏主要是在金屬板體的底面密布凹設諸多錐底具有一圓形微細孔的三角錐,然后在金屬板體的頂面設具成形為微細波浪型表面,且于波浪型表面上對應橢圓形微細孔處上方周圍亦凹設成形三角錐形。這不僅可增加了裝飾效果,而且因為增加了材料暴露在聲場中的面積,即增加了有效吸聲面積,并使聲波進入到材料深處,可提高尖劈隔音屏的吸聲性能。
金屬吸聲體或吸聲尖劈隔音屏是一種的、自成體系的吸聲結構,它主要由多孔性吸聲材料加尖錐式結構構成,它不需要壁板結構一起形成共振空腔。其特點是吸聲性能好、便于安裝,要求是質量輕、便于施工等。金屬吸聲尖劈隔音屏常采用超細玻璃棉作為填充材料,采用金屬框或H型鋼結構等為支撐架,采用玻璃絲布作為外包裝防水材料,有時也采用穿孔率大于20%的穿孔板作為外包裝。根據應力等效假設,以勁度模量作為澆注式瀝青混凝土疲勞損傷參量,將澆注式瀝青混凝土勁度模量損傷因子增量隨加載次數的累積過程分為3個階段,并將宏觀力學性能發生劇烈變化的第3階段定義為澆注式瀝青混凝土疲勞裂縫出現區域.通過對不同溫度下澆注式瀝青混凝土疲勞損傷試驗結果的分析,定義了澆注式瀝青混凝土疲勞破壞時的損傷因子為臨界損傷因子,分析得到了澆注式瀝青混凝土疲勞破壞時損傷因子與疲勞壽命之間的冪函數關系,建立了考慮溫度因素的疲勞損傷模型.
金屬吸聲體的吸聲性能與聲尖劈隔音屏的總長度以及空腔的深度、填充的吸聲材料的吸聲特性等都有關系,吸聲尖劈隔音屏越長,其低頻吸聲性能越好。